首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15513篇
  免费   2195篇
  国内免费   1588篇
工业技术   19296篇
  2024年   24篇
  2023年   210篇
  2022年   386篇
  2021年   500篇
  2020年   594篇
  2019年   518篇
  2018年   515篇
  2017年   639篇
  2016年   678篇
  2015年   843篇
  2014年   1112篇
  2013年   1204篇
  2012年   1214篇
  2011年   1558篇
  2010年   1051篇
  2009年   1173篇
  2008年   1172篇
  2007年   1129篇
  2006年   961篇
  2005年   700篇
  2004年   525篇
  2003年   483篇
  2002年   359篇
  2001年   291篇
  2000年   210篇
  1999年   200篇
  1998年   201篇
  1997年   161篇
  1996年   119篇
  1995年   90篇
  1994年   93篇
  1993年   71篇
  1992年   47篇
  1991年   50篇
  1990年   27篇
  1989年   29篇
  1988年   16篇
  1987年   9篇
  1986年   20篇
  1985年   12篇
  1984年   18篇
  1983年   17篇
  1982年   16篇
  1981年   15篇
  1980年   12篇
  1979年   7篇
  1978年   4篇
  1977年   7篇
  1973年   3篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。  相似文献   
2.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
3.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
4.
This article presents a state-space model with time-delay to map the relationship between known input-output data for discrete systems. For the given input-output data, a model identification algorithm combining parameter estimation and state estimation is proposed in line with the causality constraints. Consequently, this article proposes a least squares parameter estimation algorithm, and analyzes its convergence for the studied systems to prove that the parameter estimation errors converge to zero under the persistent excitation conditions. In control system design, the U-model based control is introduced to provide a unilateral platform to improve the design efficiency and generality. A simulation portfolio from modeling to control is provided with computational experiments to validate the derived results.  相似文献   
5.
为了准确地从复杂干扰背景下检测出真实弱小目标,本文引入视觉显著性,设计了基于快速光谱尺度空间与动态管道滤波的红外目标检测算法。基于真实目标与背景内容之间的整体差异,引入快速光谱尺度空间与阈值分割技术,设计视觉显著性机制,对红外图像完成处理,输出全局显著性映射,以高效过滤干扰背景内容。考虑目标与背景的局部特征差异,构建自适应局部对比度增强机制,对粗检测结果实施处理,获取对应的局部显著性映射,改善视觉显著性区域内目标的对比度。引入高斯差分理论,通过估算每一帧红外图像中的目标像素直径,形成动态管道滤波,充分消除虚警,准确识别出弱小目标。多组实验数据显示:较已有的红外目标检测技术而言,在各种不同的复杂背景干扰下,所提算法呈现出更好的检测能力,拥有更理想的接收机工作特性ROC曲线。  相似文献   
6.
《Ceramics International》2022,48(3):3362-3367
The influence of high-energy ball milling on structural, microstructural, and optical properties of TiO2 by modifying the nanoparticle size was studied. Five samples were extracted at different milling times (0, 2, 4, 8, and 13 h). The average particle sizes estimated by dynamic light scattering (DLS) were 205, 155.8, 116.8, 82.9, and 82.7 nm at 0, 2, 4, 8, and 13 h, respectively. X-ray diffraction analysis confirmed progressive broadening of the peaks as the milling time elapsed. Besides, a correlation was found between d spacing and the average crystal size. The UV–Vis diffuse reflectance spectra of TiO2 revealed a decrease in reflectance due to particle size reduction. Similarly, an alteration of the bandgap transition energy was presented, whose values gradually decreased from 2.966 eV to 2.861 eV for the sample without and with the maximum duration milling performed (13 h), respectively. Likewise, the SEM analysis showed a distribution in nanoparticle size that became more homogeneous and smaller average grain size as the milling duration was longer.  相似文献   
7.
8.
It is known that optical flow estimation techniques suffer from the issues of ill-defined edges and boundaries of the moving objects. Traditional variational methods for optical flow estimation are not robust to handle these issues since the local filters in these methods do not hold the robustness near the edges. In this paper, we propose a non-local total variation NLTV-L1 optical flow estimation method based on robust weighted guided filtering. Specifically, first, the robust weighted guided filtering objective function is proposed to preserve motion edges. The proposed objective function is based on the linear model which is computationally efficient and edge-preserving in complex natural scenarios. Second, the proposed weighted guided filtering objective function is incorporated into the non-local total variation NLTV-L1 energy function. Finally, the novel NLTV-L1 optical flow method is performed using the coarse-to-fine process. Additionally, we modify some state-of-the-art variational optical flow estimation methods by the robust weighted guided filtering objective function to verify the performance on Middlebury, MPI-Sintel, and Foggy Zurich sequences. Experimental results show that the proposed method can preserve edges and improve the accuracy of optical flow estimation compared with several state-of-the-art methods.  相似文献   
9.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   
10.
This paper investigates the state estimation issue for a class of wireless sensor networks (WSNs) with the consideration of limited energy resources. First, a multirate estimation model is established, and then, a new event‐triggered two‐stage information fusion algorithm is developed based on the optimal fusion criterion weighted by matrices. Compared with the existing methods, the presented fusion algorithm can significantly reduce the communication cost in WSNs and save energy resources of sensors efficiently. Furthermore, by presetting a desired containment probability over the interval [0,1] with the developed event‐triggered mechanism, one can obtain a suitable compromise between the communication cost and the estimation accuracy. Finally, a numerical simulation for the WSN tracking system is given to demonstrate the effectiveness of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号